Package: BayesESS 0.1.19

BayesESS: Determining Effective Sample Size

Determines effective sample size of a parametric prior distribution in Bayesian models. For a web-based Shiny application related to this package, see <https://implement.shinyapps.io/bayesess/>.

Authors:Jaejoon Song, Satoshi Morita, J. Jack Lee

BayesESS_0.1.19.tar.gz
BayesESS_0.1.19.zip(r-4.5)BayesESS_0.1.19.zip(r-4.4)BayesESS_0.1.19.zip(r-4.3)
BayesESS_0.1.19.tgz(r-4.4-x86_64)BayesESS_0.1.19.tgz(r-4.4-arm64)BayesESS_0.1.19.tgz(r-4.3-x86_64)BayesESS_0.1.19.tgz(r-4.3-arm64)
BayesESS_0.1.19.tar.gz(r-4.5-noble)BayesESS_0.1.19.tar.gz(r-4.4-noble)
BayesESS_0.1.19.tgz(r-4.4-emscripten)BayesESS_0.1.19.tgz(r-4.3-emscripten)
BayesESS.pdf |BayesESS.html
BayesESS/json (API)

# Install 'BayesESS' in R:
install.packages('BayesESS', repos = c('https://github-js.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/github-js/bayesess/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

2.00 score 4 scripts 201 downloads 1 exports 15 dependencies

Last updated 5 years agofrom:4bbf4df378. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64NOTENov 06 2024
R-4.5-linux-x86_64NOTENov 06 2024
R-4.4-win-x86_64NOTENov 06 2024
R-4.4-mac-x86_64NOTENov 06 2024
R-4.4-mac-aarch64NOTENov 06 2024
R-4.3-win-x86_64NOTENov 06 2024
R-4.3-mac-x86_64NOTENov 06 2024
R-4.3-mac-aarch64NOTENov 06 2024

Exports:ess

Dependencies:codadfcrmLaplacesDemonlatticeMASSMatrixMatrixModelsmcmcMCMCpackquantregRcppRcppArmadilloRcppEigenSparseMsurvival